Difference between revisions of "Electricity/zh"

From Space Engineers Wiki
Jump to: navigation, search
(电能配给优先策略)
Line 41: Line 41:
 
=== 电能配给优先策略 ===
 
=== 电能配给优先策略 ===
 
[[File:Ship_reactors_off_display.jpg|thumbnail|In the event of power failure or a power deficit, the grid will also prioritize what receives power.]]
 
[[File:Ship_reactors_off_display.jpg|thumbnail|In the event of power failure or a power deficit, the grid will also prioritize what receives power.]]
 +
《太空工程师》的电能被策略性地定义了一个优先顺序,分别为需要发电的优先次序和基于耗电权的优先次序,
  
In Space Engineers, electricity sources are ranked in order of which of them will be used first to fulfill electrical demand as a sort of automatic intelligent power management sub-system.
+
在电能充足情况下会先采用可持续的太阳能发电,然后由氢电和核电不足,最后才是电池(因为蓄电有损耗20%其实是相当大),这中次序有效节省发电原料和蓄电损耗。
The purpose of this is to utilise power sources intelligently, for example if there is both a [[Solar Panel]] and a [[Large Reactor]] available to use.
 
Instead of equally distributing a load across them the grid will attempt to utilise all of the output of a solar panel,
 
before using the reactor and use the reactor to make up any difference in demand that the solar panel cannot provide.
 
Thereby saving [[Uranium Ingot|Uranium]], instead of needlessly letting solar power go to waste.
 
In addition to this, the electrical system will also prioritize certain sub-systems over others in the event of a power deficit - that is, insufficient output available to meet demand.
 
Most of the lower ranked ones such as Batteries,
 
Thrust and Charging are '''adaptable''' meaning they automatically handle reduced input but function with lesser effect for thrusters this means they
 
still provide thrust but not as much as they could at full power, while batteries simply take longer to recharge.
 
Certain systems are not adaptable meaning they either receive power or don't resulting in blocks shutting off.
 
 
 
 
'''发电优先顺序''':
 
'''发电优先顺序''':
 
# [[Solar Panel|太阳能]] / [[Wind Turbine|风力]]
 
# [[Solar Panel|太阳能]] / [[Wind Turbine|风力]]
Line 59: Line 50:
 
# [[Battery|电池]]
 
# [[Battery|电池]]
  
 +
在电能不足的情况下,则对不同用电的设备安排了如下按子系统类别的用电优先次序,有些子系统可以适应电能供量而调整输出大小(比如推进,电池)会排在相对后序,而有些一旦不足电量就会自动停机(比如输送,防御)会排在相对优先,电池最后。
 
'''给电优先顺序''':
 
'''给电优先顺序''':
 
# (防御)Defense  - [[Interior Turret]], [[Missile Turret]], etc
 
# (防御)Defense  - [[Interior Turret]], [[Missile Turret]], etc
Line 66: Line 58:
 
# (应用)Utility  - Communications, Lights, [[Rotor]], [[Piston]], [[Medical Room]], [[Gravity Generator]], the vast majority of electronics, etc
 
# (应用)Utility  - Communications, Lights, [[Rotor]], [[Piston]], [[Medical Room]], [[Gravity Generator]], the vast majority of electronics, etc
 
# (充能)Charging - [[Jump drive]], specifically players inside cockpits or passenger chairs, recharging their suits.
 
# (充能)Charging - [[Jump drive]], specifically players inside cockpits or passenger chairs, recharging their suits.
# (方向)Gyro    - All [[Gyroscope]]s
+
# (翻滚)Gyro    - All [[Gyroscope]]s
 
# (推进)Thrust    - [[Small Thruster|Standard Thrusters]], but not [[Small Hydrogen Thruster|hydrogen based thrusters]]
 
# (推进)Thrust    - [[Small Thruster|Standard Thrusters]], but not [[Small Hydrogen Thruster|hydrogen based thrusters]]
 
# (电池)Batteries - Any [[Battery|Batteries]] attempting to charge themselves.
 
# (电池)Batteries - Any [[Battery|Batteries]] attempting to charge themselves.
 
  
 
== 设备 ==
 
== 设备 ==

Revision as of 08:12, 8 November 2021

电(Electricity) 被作为《太空工程师》中使大多数设备工作的能源系统存在。

游戏中,电能可通过《发电》类设备生产获得,供给《网格》(含《相连网格》)的《用电》,还可安装《蓄能》设备缓冲电力产能,以作后备供电源用。

多主题相关小提示

《同网格》 以及 《互连网格》 上的所有设备共享电力


电 的计算 及 基础认知

《太空工程师》中,

  • 任何能量传递和转化的效率(即:功率)以 (或W)为记量;下列图表中也会遇到高量级单位千瓦(或KW)、兆瓦(或MW)。
  • 电能量的衡量(即:电功)以瓦时(或Wh)为记量(时一般以小时计);意思是 以某功率 持续作业多久(即:功率 x 作业时间)。
    举个例子:用电设备工作功率 500瓦 ,需要工作 5小时,用于供电的电池设备 需储备电能量为 500瓦(W) x 5小时(h) = 2500瓦时(Wh) = 2.5千瓦时(KWh)

游戏中在蓄电和供电设备信息界面中会常常接触到这些电学数值,下表有助于记忆不同量级单位转换时的比值关系。

量级对照 瓦 (W) 千瓦 (kW) 兆瓦 (MW)
兆瓦 (MW) 1 000 000 W 1 000 kW 1 MW
千瓦 (kW) 1 000 W 1 kW 0.001 MW
瓦 (W) 1 W 0.001 kW 0.000 001 MW

发电装置中的,核发电站 反应堆 以 铀锭 为原料发电,其 1公斤(kg)可产出 1兆瓦时(MWh)电能量

规模更大的核发电站,只是加速反应,缩短时间,料能效率不变。
大网格的“小型核反应堆” 供电功率为 15兆瓦(MW),只需要 4分钟( 0.06~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
大网格的“大型核反应堆” 供电功率为 300兆瓦(MW),只需要 12秒钟(0.003~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)

电池蓄电效率为80%,放电无损耗。

大网格的“电池” 满足蓄电功率上限 12兆瓦,从0蓄电到3兆瓦时(MWh)满充需要 18.75分钟(需实多段计时测量),而此时耗理应可充3.75兆瓦时,其中这0.75兆瓦时被浪费(即蓄电效率80%,浪费20%),但放电无损耗
因此从抑制浪费的角度而言,用不可持续核电reactors还是可持续发电(比如太阳能solar panels )的之间,太阳能更适合为电池充电.
电池会试图为自己充电?
电池为电池充电,放电方无损耗,蓄电方效率80%.

电能配给优先策略

In the event of power failure or a power deficit, the grid will also prioritize what receives power.

《太空工程师》的电能被策略性地定义了一个优先顺序,分别为需要发电的优先次序和基于耗电权的优先次序,

在电能充足情况下会先采用可持续的太阳能发电,然后由氢电和核电不足,最后才是电池(因为蓄电有损耗20%其实是相当大),这中次序有效节省发电原料和蓄电损耗。 发电优先顺序

  1. 太阳能 / 风力
  2. 氢燃料
  3. 大号反应堆 / 小号反应堆
  4. 电池

在电能不足的情况下,则对不同用电的设备安排了如下按子系统类别的用电优先次序,有些子系统可以适应电能供量而调整输出大小(比如推进,电池)会排在相对后序,而有些一旦不足电量就会自动停机(比如输送,防御)会排在相对优先,电池最后。 给电优先顺序

  1. (防御)Defense - Interior Turret, Missile Turret, etc
  2. (输送)Conveyors - Conveyor, Conveyor Tube, blocks that make up the Conveyor Network, etc
  3. (生产)Factory - Refinery, Assembler, Oxygen Generator, Air Vent, Oxygen Tank, etc
  4. (门控)Doors - Door, Airtight Hangar Door, etc
  5. (应用)Utility - Communications, Lights, Rotor, Piston, Medical Room, Gravity Generator, the vast majority of electronics, etc
  6. (充能)Charging - Jump drive, specifically players inside cockpits or passenger chairs, recharging their suits.
  7. (翻滚)Gyro  - All Gyroscopes
  8. (推进)Thrust - Standard Thrusters, but not hydrogen based thrusters
  9. (电池)Batteries - Any Batteries attempting to charge themselves.

设备

电源

供电: Large Reactor, Small Reactor, Wind Turbine, Hydrogen Engine, or Solar Panel. 小网格: 太阳能板;小号核能站,大号核能站,氢电站

大网格: 太阳能板;小号核能站,大号核能站,氢电站;风力发电站

用电

Battery

常态耗电 待机、使用不同阶段耗电

需电

只需要待机电力 需要其它用电设备提供上游工作流程,但本体设备无需用电

无源

太空球(大,小) 起落架 磁铁头


能源(电能)

Maximum output for Electricity Sources:

Energy Source Block size Dimensions
[size in m3]
Maximum Output
[kW]
Mass
[kg]
Mass Efficiency
[kW/kg]
Energy Density
[kW/m3]
Large Reactor Icon.png Large Reactor Large Ship Icon.png Large 3x3x3 [421.875 m3] 300 000 73795 4.065 711.11
Small Ship Icon.png Small 3x3x3 [3.375 m3] 14 750 3901 3.781 4370.37
Small Reactor Icon.png Small Reactor Large Ship Icon.png Large 1x1x1 [15.625 m3] 15 000 4793 3.130 960
Small Ship Icon.png Small 1x1x1 [0.125m3] 500 278 1.799 4000
Solar Panel Icon.png Solar Panel Large Ship Icon.png Large 2x4x1 [125 m3] 120* 441.4 0.272 0.96
Small Ship Icon.png Small 5x10x1 [6.25m3] 30* 159.2 0.188 4.8
Battery Icon.png Battery Large Ship Icon.png Large 1x1x1 [15.625 m3] 12 000 4845 2.477 768
Small Ship Icon.png Small 3x2x3 [2.25m3] 4 320 1040.4 4.152 1920

(*) Solar Panels have a maximum output depending on their angle to the sun and the amount of actually lit surface. Given values are the maximum achievable output with perfect conditions, therefore efficiency and output may vary.

Large Reactor vs Small Reactor

Comparing them directly, the small reactor provides far more energy for the space it takes up; for example, 20 Small Reactors is equal to the output of a Large Reactor with only two-thirds of the space used. Despite this the large reactor offers greater economies of scale, requires less Conveyor complexity and in general is more useful in a variety of important applications especially as Powerplants for Large Ships, being both lighter and requiring fewer resources to construct. This makes Large Reactors ideal for ships that can take advantage of their reduced mass and accelerate or decelerate more easily, and therefore use less Uranium Ingots. Small Reactors are therefore ideal for stations that do not need to move, situations where physical space is precious or presents relatively light power needs that would not require a larger more expensive reactor. For example, a large reactor only needs 40 Metal Grids while a small reactor needs 4 Metal Grids at approximately 10 Small Reactors (150 MW) you would start to see economy of scale benefits clearly when using the large reactor. Between them however, they use Uranium Ingots equally as efficiently neither one will manage to extract more energy than they would otherwise have to.

Power Usage

Thruster

For power information relating to thrusters, see Thruster Mechanics.

Production (Individual Usage)

Machine Idle [kW] Operational [kW]
Projector Icon.png Projector 0.100 0.198
Arc Furnace Icon.png Arc Furnace 1.00 330
Assembler Icon.png Assembler 1.00 560
Refinery Icon.png Refinery 1.00 560
Oxygen Generator Icon.png Oxygen Generator 1.00 330
Oxygen Farm Icon.png Oxygen Farm 0.00 1

Weaponry and tools

Device Small Ship Icon.png Small Ship [kW] Large Ship Icon.png Large Ship [kW]
Drill Icon.png Drill 2 2
Welder (Ship) Icon.png Welder 2 2
Grinder (Ship) Icon.png Grinder 2 2
Gatling Turret Icon.png Gatling Turret 2 2
Missile Turret Icon.png Missile Turret 2 2
Interior Turret Icon.png Interior Turret N/A 2
Reloadable Rocket Launcher Icon.png Reloadable Rocket Launcher 0.2 N/A
Gatling Gun Icon.png Gatling Gun 0.2 N/A

Communication

Device Small Ship Icon.png Small Ship [kW] Large Ship Icon.png Large Ship [kW]
Beacon Icon.png Beacon 0 - 10 0 - 10
Antenna Icon.png Antenna 0 - 20 0 - 200
Laser Antenna Icon.png Laser Antenna 181** 577**

(**) The maximum power usage of laser antenna include both beaming and rotating at once. Beaming alone would be 180 for Small and 576 For large.

Other device power usages

Device Small Ship Icon.png Small Ship [kW] Large Ship Icon.png Large Ship [kW]
Gravity Generator Icon.png Gravity Generator N/A 0 - 567.13***
Spherical Gravity Generator Icon.png Spherical Gravity Generator N/A 0 - 1600***
Artificial Mass Icon.png Artificial Mass 25 600
Interior Light Icon.png Interior Light N/A 0.06
Spotlight Icon.png Spotlight 0.200 1
Medical Room Icon.png Medical Room N/A 2
Jump drive Icon.png Jump drive N/A 32 000****
Door Icon.png Door N/A 0.031
Sliding Door Icon.png Sliding Door N/A 0.01 - 1
Gyroscope Icon.png Gyroscope 0.001 0.03
Ore Detector Icon.png Ore Detector 2 2
LCD Panel Icon.png LCD Panel 0.1 0.1
Wide LCD Panel Icon.png Wide LCD Panel 0.2 0.2
Text Panel Icon.png Text Panel 0.02 0.06
Button Panel Icon.png Button Panel 0.1 0.1
Rotor Icon.png Rotor 0.2 2
Advanced Rotor Icon.png Advanced Rotor 0.2 2
Piston Base Icon.png Piston Base 0.2 2
Collector Icon.png Collector 2 2
Connector Icon.png Connector 0.05 5
Camera Icon.png Camera 0.03 0.03
Sensor Icon.png Sensor 0 - 30 0 - 30
Remote Control Icon.png Remote Control 10 10
Programmable Block Icon.png Programmable Block 0.5 0.5
Sound Block Icon.png Sound Block 0.2 0.2
Conveyor Icon.png Conveyor 0.04 0.04
Conveyor Sorter Icon.png Conveyor Sorter 0.1 0.25
Cryo Chamber Icon.png Cryo Chamber N/A 0.03
Oxygen Tank Icon.png Oxygen Tank 0.001 - 1 0.001 - 1
Hydrogen Tank Icon.png Hydrogen Tank 0.001 - 1 0.001 - 1

(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1 g consumes the same as -1 g). (****) Only when charging it's internal battery.