Difference between revisions of "Electricity/zh"
(→电的计算及基础认知) |
(→蓄电设备) |
||
Line 38: | Line 38: | ||
| introtemplate=Block list/header | | introtemplate=Block list/header | ||
| outrotemplate=Block list/footer | | outrotemplate=Block list/footer | ||
− | | userparam=设备;48px;CubeSize#-n;Size#-n; | + | | userparam=设备;48px;CubeSize#-n;Size#-n;Volume;MaxPowerOutput |
}} | }} | ||
{| class="wikitable sortable" | {| class="wikitable sortable" |
Revision as of 03:25, 11 July 2023
Contents
综述
- 电能[1]在游戏中作为设备运作的能源机制之一。
- 电能可通过供电设备产生,能在相连网格上传播,各式用电器持续消耗电能来实现各自功能。
- 星体对电能绝缘。
设备
供电
供电: Large Reactor, Small Reactor, Wind Turbine, Hydrogen Engine, or Solar Panel. 小网格: 太阳能板;小号核能站,大号核能站,氢电站
大网格: 太阳能板;小号核能站,大号核能站,氢电站;风力发电站
发电设备
发电装置中的,核发电站 反应堆 以 铀锭 为原料发电,其 1公斤(kg)可产出 1兆瓦时(MWh)电能量
- 规模更大的核发电站,只是加速反应,缩短时间,料能效率不变。
- 大网格的“小型核反应堆” 供电功率为 15兆瓦(MW),只需要 4分钟( 0.06~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
- 大网格的“大型核反应堆” 供电功率为 300兆瓦(MW),只需要 12秒钟(0.003~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
蓄电设备
电池设备蓄电效率为80%,供电无损耗。
- 大网格的“电池” 满足蓄电功率上限 12兆瓦,从0蓄电到3兆瓦时(MWh)满充需要 18.75分钟(需实多段计时测量),而此时耗理应可充3.75兆瓦时,其中这0.75兆瓦时被浪费(即蓄电效率80%,浪费20%),但放电无损耗
- 因此从抑制浪费的角度而言,用不可持续核电reactors还是可持续发电(比如太阳能solar panels )的之间,太阳能更适合为电池充电.
- 电池会试图为自己充电?
- 电池为电池充电,放电方无损耗,蓄电方效率80%.
Maximum output for Electricity Sources:
设备 | 方块规格 | 尺寸(宽,高,长) | Property:Volume;MaxPowerOutput/zh |
---|---|---|---|
电池 | Large | 1,1,1 | |
48px Warfare电池 | Large | 1,1,1 | |
大型反应堆 | Large | 3,3,3 | |
48px 大型Warfare反应堆 | Large | 3,3,3 | |
小型反应堆 | Large | 1,1,1 | |
48px 小型Warfare反应堆 | Large | 1,1,1 | |
太阳能板 | Large | 4,2,1 | |
风轮机 | Large | 3,3,3 | |
氢气引擎 | Large | 1,1,2 | |
电池 | Small | 3,2,3 | |
48px Warfare电池 | Small | 3,2,3 | |
大型反应堆 | Small | 3,3,3 | |
48px 大型Warfare反应堆 | Small | 3,3,3 | |
小电池 | Small | 1,1,1 | |
小型反应堆 | Small | 1,1,1 | |
48px 小型Warfare反应堆 | Small | 1,1,1 | |
太阳能板 | Small | 10,5,1 | |
氢气引擎 | Small | 3,2,2 |
Energy Source | Block size | Dimensions [size in m3] |
Maximum Output [kW] |
Mass [kg] |
Mass Efficiency [kW/kg] |
Energy Density [kW/m3] | |
---|---|---|---|---|---|---|---|
Large Reactor | Large | 3x3x3 [421.875 m3] | 300 000 | 73795 | 4.065 | 711.11 | |
Small | 3x3x3 [3.375 m3] | 14 750 | 3901 | 3.781 | 4370.37 | ||
Small Reactor | Large | 1x1x1 [15.625 m3] | 15 000 | 4793 | 3.130 | 960 | |
Small | 1x1x1 [0.125m3] | 500 | 278 | 1.799 | 4000 | ||
Solar Panel | Large | 2x4x1 [125 m3] | 120* | 441.4 | 0.272 | 0.96 | |
Small | 5x10x1 [6.25m3] | 30* | 159.2 | 0.188 | 4.8 | ||
Battery | Large | 1x1x1 [15.625 m3] | 12 000 | 4845 | 2.477 | 768 | |
Small | 3x2x3 [2.25m3] | 4 320 | 1040.4 | 4.152 | 1920 |
(*) Solar Panels have a maximum output depending on their angle to the sun and the amount of actually lit surface. Given values are the maximum achievable output with perfect conditions, therefore efficiency and output may vary.
Large Reactor vs Small Reactor
Comparing them directly, the small reactor provides far more energy for the space it takes up; for example, 20 Small Reactors is equal to the output of a Large Reactor with only two-thirds of the space used. Despite this the large reactor offers greater economies of scale, requires less Conveyor complexity and in general is more useful in a variety of important applications especially as Powerplants for Large Ships, being both lighter and requiring fewer resources to construct. This makes Large Reactors ideal for ships that can take advantage of their reduced mass and accelerate or decelerate more easily, and therefore use less Uranium Ingots. Small Reactors are therefore ideal for stations that do not need to move, situations where physical space is precious or presents relatively light power needs that would not require a larger more expensive reactor. For example, a large reactor only needs 40 Metal Grids while a small reactor needs 4 Metal Grids at approximately 10 Small Reactors (150 MW) you would start to see economy of scale benefits clearly when using the large reactor. Between them however, they use Uranium Ingots equally as efficiently neither one will manage to extract more energy than they would otherwise have to.
用电
常态耗电 待机、使用不同阶段耗电
需电
只需要待机电力 需要其它用电设备提供上游工作流程,但本体设备无需用电
无源
太空球(大,小) 磁吸设备:起落架、磁铁
Thruster
For power information relating to thrusters, see Thruster Mechanics.
Production (Individual Usage)
Machine | Idle [kW] | Operational [kW] | |
---|---|---|---|
Projector | 0.100 | 0.198 | |
Arc Furnace | 1.00 | 330 | |
Assembler | 1.00 | 560 | |
Refinery | 1.00 | 560 | |
Oxygen Generator | 1.00 | 330 | |
Oxygen Farm | 0.00 | 1 |
Weaponry and tools
Device | Small Ship [kW] | Large Ship [kW] | |
---|---|---|---|
Drill | 2 | 2 | |
Welder | 2 | 2 | |
Grinder | 2 | 2 | |
Gatling Turret | 2 | 2 | |
Missile Turret | 2 | 2 | |
Interior Turret | N/A | 2 | |
Reloadable Rocket Launcher | 0.2 | N/A | |
Gatling Gun | 0.2 | N/A |
Communication
Device | Small Ship [kW] | Large Ship [kW] | |
---|---|---|---|
Beacon | 0 - 10 | 0 - 10 | |
Antenna | 0 - 20 | 0 - 200 | |
Laser Antenna | 181** | 577** |
(**) The maximum power usage of laser antenna include both beaming and rotating at once. Beaming alone would be 180 for Small and 576 For large.
Other device power usages
Device | Small Ship [kW] | Large Ship [kW] | |
---|---|---|---|
Gravity Generator | N/A | 0 - 567.13*** | |
Spherical Gravity Generator | N/A | 0 - 1600*** | |
Artificial Mass | 25 | 600 | |
Interior Light | N/A | 0.06 | |
Spotlight | 0.200 | 1 | |
Medical Room | N/A | 2 | |
Jump drive | N/A | 32 000**** | |
Door | N/A | 0.031 | |
Sliding Door | N/A | 0.01 - 1 | |
Gyroscope | 0.001 | 0.03 | |
Ore Detector | 2 | 2 | |
LCD Panel | 0.1 | 0.1 | |
Wide LCD Panel | 0.2 | 0.2 | |
Text Panel | 0.02 | 0.06 | |
Button Panel | 0.1 | 0.1 | |
Rotor | 0.2 | 2 | |
Advanced Rotor | 0.2 | 2 | |
Piston Base | 0.2 | 2 | |
Collector | 2 | 2 | |
Connector | 0.05 | 5 | |
Camera | 0.03 | 0.03 | |
Sensor | 0 - 30 | 0 - 30 | |
Remote Control | 10 | 10 | |
Programmable Block | 0.5 | 0.5 | |
Sound Block | 0.2 | 0.2 | |
Conveyor | 0.04 | 0.04 | |
Conveyor Sorter | 0.1 | 0.25 | |
Cryo Chamber | N/A | 0.03 | |
Oxygen Tank | 0.001 - 1 | 0.001 - 1 | |
Hydrogen Tank | 0.001 - 1 | 0.001 - 1 |
(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1 g consumes the same as -1 g). (****) Only when charging it's internal battery.
配电策略
优先供电策略
- 当负载集群有用电需求时,首先由可持续供电设备供电,其次由燃料供电设备供电,最后由后备供电设备补充。
优先用电策略
- 用电设备按功能归类并划分了用电的次序,设备可适应电能供量而调整输出大小的(比如推进,电池)会排在后序,而那些不足电量就会自动停机的设备(比如输送,防御)会排在相对优先;电池的蓄电行为排在最后。
- (防御)Defense - Interior Turret, Missile Turret, etc
- (输送)Conveyors - Conveyor, Conveyor Tube, blocks that make up the Conveyor Network, etc
- (生产)Factory - Refinery, Assembler, Oxygen Generator, Air Vent, Oxygen Tank, etc
- (门控)Doors - Door, Airtight Hangar Door, etc
- (应用)Utility - Communications, Lights, Rotor, Piston, Medical Room, Gravity Generator, the vast majority of electronics, etc
- (充能)Charging - Jump drive, specifically players inside cockpits or passenger chairs, recharging their suits.
- (翻滚)Gyro - All Gyroscopes
- (推进)Thrust - Standard Thrusters, but not hydrogen based thrusters
- (电池)Batteries - Any Batteries attempting to charge themselves.
电的计算及基础认知
- 游戏中在蓄电和供电设备信息界面中会常常接触到这些电学数值,下表有助于记忆不同量级单位转换时的比值关系。
量级对照 瓦 (W) 千瓦 (kW) 兆瓦 (MW) 兆瓦 (MW) 1 000 000 W 1 000 kW 1 MW 千瓦 (kW) 1 000 W 1 kW 0.001 MW 瓦 (W) 1 W 0.001 kW 0.000 001 MW