Difference between revisions of "Electricity"

From Space Engineers Wiki
Jump to: navigation, search
(+added cryo chamber)
(+expanded article)
Line 175: Line 175:
 
|-
 
|-
 
| {{icon|Sound Block|small}}|| [[Sound Block]] || 0.2 || 0.2
 
| {{icon|Sound Block|small}}|| [[Sound Block]] || 0.2 || 0.2
 +
|-
 +
| {{icon|Conveyor|small}}|| [[Conveyor]] || 0.04**** || 0.04****
 +
|-
 +
| {{icon|Conveyor Sorter|small}}|| [[Conveyor Sorter]] || 0.1 || 0.25
 
|-
 
|-
 
| {{icon|Cryo Chamber|small}}|| [[Cryo Chamber]] || N/A || 0.03
 
| {{icon|Cryo Chamber|small}}|| [[Cryo Chamber]] || N/A || 0.03
Line 184: Line 188:
  
 
(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1G consumes the same as -1G).
 
(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1G consumes the same as -1G).
 +
(****) This is a flat rate once at least two inventories have been connected to the Conveyor.
  
 
[[Category:Game Mechanics]]
 
[[Category:Game Mechanics]]

Revision as of 17:32, 31 October 2015

Electricity is a system and resource in Space Engineers that is used to power most devices. It is created using a large or small reactor, or by using a Solar Panel. It can be stored in a Battery. Any device that has a direct block connection to a reactor will be powered by a reactor; that is, if a reactor is on a ship, all devices attached to that ship should receive power granted there is enough power to receive. Electricity can pass through rotor blocks, pistons, and locked connectors (incl. small-to-large connections), but not landing gear. Most blocks have off switches if you want to save electricity temporarily.

Electricity fundamentals & Terminology

In Space Engineers, electricity is based around several concepts. When referring to consumption or demand, a Watt of energy demand will consume 1 watt over 1 second. Watts come in various unit conversions from KW to MW, as seen in the table. When referring to energy stored or energy needed over time, a Watt-hour (W-h) is typically used to represent this amount over an hour (3600 seconds). This is typically used to refer to stored energy in a charged battery or to fuel like uranium ingots. Reactors are the main source of reliable electricity, and they require Uranium Ingots as fuel.

1 kg of refined uranium ingots converts to 1 MW-h of power, that is a reactor that needs to supply 1 MW per second to ship or station will consume all of its uranium in 1 hour. If the reactor needs to supply 2 MW per second, it will consume 1 kg of uranium in half the time and so on. For example, a large block Small Reactor generating electricity at maximum capacity 15 MW to supply a large ship's total electrical needs (such as refineries, thrusters at full capacity, etc), will consume 1 kg of uranium in 4 minutes. While a large block Large Reactor will consume 1 kg of uranium ingots in as little as 12 seconds, at it's full output of 300 MW per second. Consumption of Uranium is solely decided by your current energy demand. There is no difference in efficiency between large and small reactors per uranium ingot, so a large reactor doesn't use uranium or extract any more energy out of a uranium ingot than any small one would. It also makes no difference how many reactors you have online, reactors that are not needed will not draw any unnecessary power or use any uranium within them until required.

A Battery is special it doesn't general electricity it merely stores it for later use, its wise to combine renewable electrical generation from solar panels with batteries and never use reactors as the battery is only 80% efficient. That is while it will draw 4 MW per second and store 3.00 MW-h (for large blocks), the battery will actually end up demanding/using 3.75 MW-h from electrical sources - 750 KW-h will be wasted. A Large Ship battery continuously at full output 12 MW, at maximum charge 3.00 MW-h will be completely depleted in 15 Minutes.


Conversion Table Watt (W) Kilo-Watt (KW) Mega-Watt (MW)
Mega-Watt (MW) 1'000'000 W 1'000 KW 1 MW
Kilo-Watt (KW) 1'000 W 1 KW 0.001 MW
Watt (W) 1 W 0.001 KW 0.000001 MW


Energy sources

Maximum output for Electricity Sources:

Energy Source Block size Dimensions
[size in m3]
Maximum Output
[KW]
Mass
[kg]
Mass Efficiency
[KW/Kg]
Energy Density
[KW/m3]
Large Reactor Icon.png Large Reactor Large Ship Icon.png Large 3x3x3 [421.875 m3] 300'000 73795 4.065 711.11
Small Ship Icon.png Small 3x3x3 [3.375 m3] 14'750 4793 3.845 960
Small Reactor Icon.png Small Reactor Large Ship Icon.png Large 1x1x1 [15.625 m3] 15'000 3901 3.077 4370.37
Small Ship Icon.png Small 1x1x1 [0.125m3] 500 278 1.799 4000
Solar Panel Icon.png Solar Panel Large Ship Icon.png Large 2x4x1 [125 m3] 120* 441.4 0.272 0.96
Small Ship Icon.png Small 5x10x1 [6.25m3] 30* 159.2 0.188 4.8
Battery Icon.png Battery Large Ship Icon.png Large 1x1x1 [15.625 m3] 12'000 4845 2.477 768
Small Ship Icon.png Small 3x2x3 [2.25m3] 4'320 1040.4 4.152 1920

(*) Solar Panels have a maximum output depending on their angle to the sun and the amount of actually lit surface. Given values are the maximum achievable output with perfect conditions, therefore efficiency and output may vary.

Large Reactor vs Small Reactor

Comparing them directly, the small reactors provide far more energy for the space they take up; Needing only 20 Small Reactors to equal the output of a Large Reactor with only Two-Thirds of the space used. Despite this the large reactor offers greater economies of scale, require less Conveyor complexity and in general more useful in a variety of important applications especially as Powerplants for Large Ships being both lighter and requiring less resources. Making Large Reactors ideal for ships that can take advantage of their lessened mass and accelerate or decelerate more easily and therefore use less Uranium Ingots. Small Reactors are therefore ideal for stations that do not need to move, situations where physical space is precious or relatively light power needs that would not require a larger more expensive reactor. For example, a large reactor only needs 40 Metal Grids while a small reactor needs 4 Metal Grids at approximately 10 Small Reactors (150 MW) you would start to see economy of scale benefits clearly when using the large reactor. Between them however, they use Uranium Ingots equally as efficiently neither one will manage to extract more energy than they would otherwise have to.

Power Usage

Thruster

Thruster type Block type Minimum Power [KW] Maximum Power [KW]
Small Thruster Icon.png Small Small Ship Icon.png Small 0.002 201
Large Thruster Icon.png Large Small Ship Icon.png Small 0.002 2'400
Small Thruster Icon.png Small Large Ship Icon.png Large 0.002 3'360
Large Thruster Icon.png Large Large Ship Icon.png Large 0.002 33'600

Production (Individual Usage)

Machine Idle [KW] Operational [KW]
Projector Icon.png Projector 0.100 0.198
Arc Furnace Icon.png Arc Furnace 1.00 330.000
Assembler Icon.png Assembler 1.00 560.000
Refinery Icon.png Refinery 1.00 560.000
Oxygen Generator Icon.png Oxygen Generator 1.00 330.000
Oxygen Farm Icon.png Oxygen Farm 0.00 1.00

Weaponry and tools

Device Small Ship Icon.png Small Ship [KW] Large Ship Icon.png Large Ship [KW]
Drill Icon.png Drill 2 2
Welder (Tool) Icon.png Welder 2 2
Grinder (Tool) Icon.png Grinder 2 2
Gatling Turret Icon.png Gatling Turret N/A 2
Missile Turret Icon.png Missile Turret N/A 2
Interior Turret Icon.png Interior Turret N/A 2
Reloadable Rocket Launcher Icon.png Reloadable Rocket Launcher 0.2 N/A
Gatling Gun Icon.png Gatling Gun 0.2 N/A

Communication

Device Small Ship Icon.png Small Ship [KW] Large Ship Icon.png Large Ship [KW]
Beacon Icon.png Beacon 0 - 10 0 - 10
Antenna Icon.png Antenna 0 - 20 0 - 200
Laser Antenna Icon.png Laser Antenna 181** 577**

(**) The maximum power usage of laser antenna include both beaming and rotating at once. Beaming alone would be 180 for Small and 576 For large.

Other device power usages

Device Small Ship Icon.png Small Ship [KW] Large Ship Icon.png Large Ship [KW]
Gravity Generator Icon.png Gravity Generator N/A 0 - 567.13***
Spherical Gravity Generator Icon.png Spherical Gravity Generator N/A 0 - 44800***
Artificial Mass Icon.png Artificial Mass 25 600
Interior Light Icon.png Interior Light N/A 0.06
Spotlight Icon.png Spotlight 0.200 1
Medical Room Icon.png Medical Room N/A 2
Door Icon.png Door N/A 0.031
Gyroscope Icon.png Gyroscope 0.001 0.03
Ore Detector Icon.png Ore Detector 2 2
LCD Panel Icon.png LCD Panel 0.1 0.1
Wide LCD Panel Icon.png Wide LCD Panel 0.2 0.2
Button Panel Icon.png Button Panel 0.1 0.1
Rotor Icon.png Rotor 0.2 2
Advanced Rotor Icon.png Advanced Rotor 0.2 2
Piston Base Icon.png Piston Base 0.2 2
Collector Icon.png Collector 2 2
Connector Icon.png Connector 0.05 5
Camera Icon.png Camera 0.03 0.03
Sensor Icon.png Sensor 0 - 30 0 - 30
Remote Control Icon.png Remote Control 10 10
Programmable Block Icon.png Programmable Block 0.5 0.5
Sound Block Icon.png Sound Block 0.2 0.2
Conveyor Icon.png Conveyor 0.04**** 0.04****
Conveyor Sorter Icon.png Conveyor Sorter 0.1 0.25
Cryo Chamber Icon.png Cryo Chamber N/A 0.03
Oxygen Tank Icon.png Oxygen Tank 0.001 - 1 0.001 - 1
Hydrogen Tank Icon.png Hydrogen Tank 0.001 - 1 0.001 - 1

(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1G consumes the same as -1G). (****) This is a flat rate once at least two inventories have been connected to the Conveyor.