Difference between revisions of "Electricity/zh"

From Space Engineers Wiki
Jump to: navigation, search
(能源(电能))
(综述)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''电(Electricity)''' 被作为《太空工程师》中使大多数设备工作的能源系统存在。
+
== 综述 ==
:
+
:'''电能'''<ref>Electricity</ref>在游戏中作为设备运作的能源机制之一。
游戏中,电能可通过《发电》类设备生产获得,供给《网格》(含《相连网格》)的《用电》,还可安装《蓄能》设备缓冲电力产能,以作后备供电源用。
 
  
====多主题相关小提示====
+
:电能可通过供电设备产生,能在相连网格上传播,各式用电器持续消耗电能来实现各自功能。
《同网格》 以及 《互连网格》 上的所有设备共享电力
 
  
 +
==供电设备==
  
== 电 的计算 及 基础认知 ==
+
{{#ask: [[Concept:PowerSource]]
《太空工程师》中,
+
| format=template
*任何能量传递和转化的效率(即:功率)以 '''瓦'''(或[[wikipedia:watt|'''W''']])为记量;下列图表中也会遇到高量级单位'''千瓦'''(或'''KW''')、'''兆瓦'''(或'''MW''')。
+
| link=none
*电能量的衡量(即:电功)以'''瓦时'''(或[[wikipedia:kilowatt hour|'''Wh''']])为记量(时一般以小时计);意思是 以某功率 持续作业多久(即:功率 x 作业时间)。
+
| template=Block list
*:举个例子:用电设备工作功率 500瓦 ,需要工作 5小时,用于供电的电池设备 需储备电能量为 500瓦(W) x 5小时(h) = 2500瓦时(Wh) = 2.5千瓦时(KWh)
+
| introtemplate=Block list/header
:
+
| outrotemplate=Block list/footer
游戏中在蓄电和供电设备信息界面中会常常接触到这些电学数值,下表有助于记忆不同量级单位转换时的比值关系。
+
| userparam=设备;48px;CubeSize#-n;Size#-n;Volume;MaxPowerOutput;Mass
{| class="wikitable"
+
}}
|-
+
 
! 量级对照 !! 瓦 (W) !! 千瓦 (kW) !! 兆瓦 (MW)
+
=== 大小反应堆的效率差别 ===
|-
 
!兆瓦 (MW)
 
|style="text-align:right;"| 1 000 000 W ||style="text-align:right;"| 1 000 kW ||style="text-align:right;"| 1 MW
 
|-
 
!千瓦 (kW)
 
|style="text-align:right;"| 1 000 W ||style="text-align:right;"| 1 kW ||style="text-align:right;"| 0.001 MW
 
|-
 
!瓦 (W)
 
|style="text-align:right;"| 1 W    ||style="text-align:right;"| 0.001 kW ||style="text-align:right;"| 0.000 001 MW
 
|}
 
:
 
 
发电装置中的,核发电站 反应堆 以 [[Uranium Ingot|铀锭]] 为原料发电,其 1公斤(kg)可产出 1兆瓦时(MWh)电能量
 
发电装置中的,核发电站 反应堆 以 [[Uranium Ingot|铀锭]] 为原料发电,其 1公斤(kg)可产出 1兆瓦时(MWh)电能量
 
:规模更大的核发电站,只是加速反应,缩短时间,料能效率不变。
 
:规模更大的核发电站,只是加速反应,缩短时间,料能效率不变。
 
:大网格的“[[Small Reactor|小型核反应堆]]” 供电功率为  15兆瓦(MW),只需要  4分钟( 0.06~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
 
:大网格的“[[Small Reactor|小型核反应堆]]” 供电功率为  15兆瓦(MW),只需要  4分钟( 0.06~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
 
:大网格的“[[Large Reactor|大型核反应堆]]” 供电功率为 300兆瓦(MW),只需要 12秒钟(0.003~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
 
:大网格的“[[Large Reactor|大型核反应堆]]” 供电功率为 300兆瓦(MW),只需要 12秒钟(0.003~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
:
+
 
电池蓄电效率为80%,放电无损耗。
+
=== 电池的蓄电效率 ===
 +
电池设备蓄电效率为80%,供电无损耗。
 +
 
 
:大网格的“[[Battery|电池]]” 满足蓄电功率上限 12兆瓦,从0蓄电到3兆瓦时(MWh)满充需要 18.75分钟(需实多段计时测量),而此时耗理应可充3.75兆瓦时,其中这0.75兆瓦时被浪费(即蓄电效率80%,浪费20%),但放电无损耗
 
:大网格的“[[Battery|电池]]” 满足蓄电功率上限 12兆瓦,从0蓄电到3兆瓦时(MWh)满充需要 18.75分钟(需实多段计时测量),而此时耗理应可充3.75兆瓦时,其中这0.75兆瓦时被浪费(即蓄电效率80%,浪费20%),但放电无损耗
 
:因此从抑制浪费的角度而言,用不可持续核电[[Reactor|reactors]]还是可持续发电(比如太阳能[[Solar Panel|solar panels]] )的之间,太阳能更适合为电池充电.
 
:因此从抑制浪费的角度而言,用不可持续核电[[Reactor|reactors]]还是可持续发电(比如太阳能[[Solar Panel|solar panels]] )的之间,太阳能更适合为电池充电.
Line 39: Line 29:
 
:电池为电池充电,放电方无损耗,蓄电方效率80%.
 
:电池为电池充电,放电方无损耗,蓄电方效率80%.
  
=== 电能配给优先策略 ===
+
==用电设备==
[[File:Ship_reactors_off_display.jpg|thumbnail|In the event of power failure or a power deficit, the grid will also prioritize what receives power.旧版才能看到的界面]]
+
常态耗电
《太空工程师》的电能被策略性地定义了一个优先顺序,分别为需要发电的优先次序和基于耗电权的优先次序,
+
待机、使用不同阶段耗电
 +
===Thruster===
 +
<!-- This table really should be using SMW and #ask for thrusters anyway -->
 +
For power information relating to thrusters, see [[Thruster|Thruster Mechanics]].
 +
===Production (Individual Usage)===
 +
===Weaponry and tools===
 +
===Communication===
 +
 
 +
==需电设备==
 +
只需要待机电力,需要有电,但并不用很多
 +
需要其它用电设备提供上游工作流程,但本体设备无需用电
 +
===Other device power usages===
 +
 
 +
==无源设备==
 +
那些看起来似乎需求能源的设备
 +
太空球(大,小)
 +
磁吸设备:起落架、磁铁
 +
 
 +
 
 +
==配电策略 ==
 +
=== 优先供电策略 ===
 +
:当负载集群有用电需求时,首先由可持续供电设备供电,其次由燃料供电设备供电,最后由后备供电设备补充。
  
*'''发电次序策略''':在设备需电时,由可持续供电设备优先供电,然后由燃料供电设备补足,最后由后备供电装置支持
 
 
:# [[Solar Panel|太阳能板]] 和 [[Wind Turbine|风轮机]] :均为可持续供电设备,虽然供电能力不大,且可能受环境或方位影响,但方便直接,无需燃料。
 
:# [[Solar Panel|太阳能板]] 和 [[Wind Turbine|风轮机]] :均为可持续供电设备,虽然供电能力不大,且可能受环境或方位影响,但方便直接,无需燃料。
 
:# [[Hydrogen Engine|氢气引擎]] :采用低价值的氢气为发电燃料;需要提供氢气库存,氢气的能效并不高。
 
:# [[Hydrogen Engine|氢气引擎]] :采用低价值的氢气为发电燃料;需要提供氢气库存,氢气的能效并不高。
 
:# [[Large Reactor|大号反应堆]] 和 [[Small Reactor|小号反应堆]] :采用高效但极端昂贵的铀锭为发电原料(铀矿非常稀有,铀锭的制取相当耗时,购买又昂贵)
 
:# [[Large Reactor|大号反应堆]] 和 [[Small Reactor|小号反应堆]] :采用高效但极端昂贵的铀锭为发电原料(铀矿非常稀有,铀锭的制取相当耗时,购买又昂贵)
:# [[Battery|电池]] :角色就是后备电源,应急而用;并且会因为蓄电浪费20%充电的电能
+
:# [[Battery|电池]] :作为后备供电,应急用;并且蓄电效率浪费20%充电的电能
 +
 
 +
=== 优先用电策略 ===
 +
:用电设备按功能归类并划分了用电的次序,设备可适应电能供量而调整输出大小的(比如推进,电池)会排在后序,而那些不足电量就会自动停机的设备(比如输送,防御)会排在相对优先;电池的蓄电行为排在最后。
  
:
 
*'''给电次序策略''':
 
:对用电设备按功能归类并划分了用电的次序,设备可适应电能供量而调整输出大小的(比如推进,电池)会排在后序,而那些不足电量就会自动停机的设备(比如输送,防御)会排在相对优先;电池的蓄电排在最后。
 
 
:# (防御)Defense  - [[Interior Turret]], [[Missile Turret]], etc
 
:# (防御)Defense  - [[Interior Turret]], [[Missile Turret]], etc
 
:# (输送)Conveyors - [[Conveyor]], [[Conveyor Tube]], blocks that make up the [[Conveyor Network]], etc
 
:# (输送)Conveyors - [[Conveyor]], [[Conveyor Tube]], blocks that make up the [[Conveyor Network]], etc
Line 62: Line 72:
 
:# (电池)Batteries - Any [[Battery|Batteries]] attempting to charge themselves.
 
:# (电池)Batteries - Any [[Battery|Batteries]] attempting to charge themselves.
  
== 设备 ==
+
== 电的计算及基础认知 ==
 
+
*'''功率'''表示能量传递和转化的效率;以 '''瓦'''(或[[wikipedia:watt|'''W''']])为记量单位。<ref>高量级单位有 '''千瓦'''(或'''KW''')、'''兆瓦'''(或'''MW''')等</ref>
=== 电源 ===
+
*'''电功'''表示对电能量的多少;以'''瓦时'''(或[[wikipedia:kilowatt hour|'''Wh''']])为记量单位。<ref>意思是 以某功率 持续作业多久(即:功率 x 作业小时);例如:用电设备工作功率500瓦,需要连续工作5小时,则供电电池设备需预先储备电能量为 500瓦(W)x 5小时(h)= 2500瓦时(Wh)= 2.5千瓦时(KWh)</ref>
供电:
 
[[Large Reactor]], [[Small Reactor]], [[Wind Turbine]], [[Hydrogen Engine]], or [[Solar Panel]].
 
小网格:
 
太阳能板;小号核能站,大号核能站,氢电站
 
 
 
大网格:
 
太阳能板;小号核能站,大号核能站,氢电站;风力发电站
 
 
 
=== 用电 ===
 
[[Battery]]
 
 
 
<!--
 
It can be stored in a  and discharged to the [[grid]] it is built on.
 
Any device that has a direct [[Blocks|block]] connection to a power source will be powered by that power source;
 
that is, if a reactor is on a ship, all devices attached to that ship should receive power - provided there is enough power to supply all active blocks on the grid.
 
Electricity can pass through [[Rotor|rotor blocks]], [[Piston|pistons]], [[Hinge|hinges]] and locked [[Connector|connectors]] (incl. small-to-large connections),
 
but not [[Landing Gear|landing gears]].
 
Most blocks have off switches if you want to save electricity temporarily, which is particularly useful in [[Survival Mode]].
 
-->
 
常态耗电
 
待机、使用不同阶段耗电
 
 
 
=== 需电 ===
 
只需要待机电力
 
需要其它用电设备提供上游工作流程,但本体设备无需用电
 
  
=== 无源 ===
 
太空球(大,小)
 
起落架
 
磁铁头
 
  
 +
:游戏中在蓄电和供电设备信息界面中会常常接触到这些电学数值,下表有助于记忆不同量级单位转换时的比值关系。
  
== 能源(电能)==
+
:{| class="wikitable"
 
 
Maximum output for Electricity Sources:
 
{{#ask: [[Concept:PowerSource]]
 
| format=template
 
| link=none
 
| template=Block list
 
| introtemplate=Block list/header
 
| outrotemplate=Block list/footer
 
| userparam=设备;48px;CubeSize#-n;Size#-n;MaxPowerOutput;Volume#立方米
 
}}
 
{| class="wikitable sortable"
 
 
|-
 
|-
!colspan="2" style="text-align:center ;" class="unsortable" | Energy Source !!class="unsortable" | Block size !!class="unsortable" | Dimensions <br>[size in m<sup>3</sup>] !! data-sort-type="number"| Maximum Output <br>[kW] !! Mass <br>[kg] !! Mass Efficiency <br>[kW/kg]!! Energy Density<br> [kW/m<sup>3</sup>]
+
! 量级对照 !! 瓦 (W) !! 千瓦 (kW) !! 兆瓦 (MW)
 
|-  
 
|-  
|rowspan="2" | {{icon|Large Reactor|small}} ||rowspan="2"| [[Large Reactor]] || {{icon|Large_Ship|small}} Large ||style="text-align:right;"| 3x3x3 [421.875 m<sup>3</sup>]||style="text-align:right;" data-sort-value=300| 300 000 ||style="text-align:right;"| 73795 ||style="text-align:right;"| 4.065 ||style="text-align:right;"| 711.11
+
!兆瓦 (MW)
 +
|style="text-align:right;"| 1 000 000 W ||style="text-align:right;"| 1 000 kW ||style="text-align:right;"| 1 MW
 
|-  
 
|-  
| {{icon|Small_Ship|small}} Small ||style="text-align:right;"| 3x3x3 [3.375 m<sup>3</sup>]||style="text-align:right;" data-sort-value=14.75| 14 750 ||style="text-align:right;"| 3901 ||style="text-align:right;"| 3.781 ||style="text-align:right;"| 4370.37
+
!千瓦 (kW)
|-
+
|style="text-align:right;"| 1 000 W ||style="text-align:right;"| 1 kW ||style="text-align:right;"| 0.001 MW
|rowspan="2" |{{icon|Small Reactor|small}} ||rowspan="2"| [[Small Reactor]] || {{icon|Large_Ship|small}} Large ||style="text-align:right;"| 1x1x1 [15.625 m<sup>3</sup>]||style="text-align:right;" data-sort-value=15| 15 000 ||style="text-align:right;"| 4793 ||style="text-align:right;"| 3.130 ||style="text-align:right;"| 960
 
 
|-  
 
|-  
| {{icon|Small_Ship|small}} Small ||style="text-align:right;"| 1x1x1 [0.125m<sup>3</sup>]||style="text-align:right;" data-sort-value=0.5| 500 ||style="text-align:right;"| 278 ||style="text-align:right;"| 1.799 ||style="text-align:right;"| 4000
+
!(W)  
|-
+
|style="text-align:right;"| 1 W    ||style="text-align:right;"| 0.001 kW ||style="text-align:right;"| 0.000 001 MW
|rowspan="2" |{{icon|Solar Panel|small}} ||rowspan="2"| [[Solar Panel]] || {{icon|Large_Ship|small}} Large ||style="text-align:right;"| 2x4x1 [125 m<sup>3</sup>]||style="text-align:right;" data-sort-value=0.12| 120* ||style="text-align:right;"| 441.4 ||style="text-align:right;"| 0.272 ||style="text-align:right;"| 0.96
 
|-
 
| {{icon|Small_Ship|small}} Small ||style="text-align:right;"| 5x10x1 [6.25m<sup>3</sup>]||style="text-align:right;" data-sort-value=0.03| 30* ||style="text-align:right;"| 159.2 ||style="text-align:right;"| 0.188 ||style="text-align:right;"| 4.8
 
|-
 
|rowspan="2" |{{icon|Battery|small}} ||rowspan="2"| [[Battery]] || {{icon|Large_Ship|small}} Large ||style="text-align:right;"| 1x1x1 [15.625 m<sup>3</sup>]||style="text-align:right;" data-sort-value=12| 12 000 ||style="text-align:right;"| 4845 ||style="text-align:right;"| 2.477 ||style="text-align:right;"| 768
 
|-
 
| {{icon|Small_Ship|small}} Small ||style="text-align:right;"| 3x2x3 [2.25m<sup>3</sup>]||style="text-align:right;" data-sort-value=4.32| 4 320 ||style="text-align:right;"| 1040.4 ||style="text-align:right;"| 4.152 ||style="text-align:right;"| 1920
 
|-
 
|}
 
 
 
(*) Solar Panels have a maximum output depending on their angle to the sun and the amount of actually lit surface. Given values are the maximum achievable output with perfect conditions, therefore efficiency and output may vary.
 
 
 
=== Large Reactor vs Small Reactor ===
 
 
 
Comparing them directly, the small reactor provides far more energy for the space it takes up; for example, 20 Small Reactors is equal to the output of a Large Reactor with only two-thirds of the space used. Despite this the large reactor offers greater economies of scale, requires less [[Conveyor]] complexity and in general is more useful in a variety of important applications especially as Powerplants for Large Ships, being both lighter and requiring fewer resources to construct. This makes Large Reactors ideal for ships that can take advantage of their reduced mass and accelerate or decelerate more easily, and therefore use less [[Uranium Ingot|Uranium Ingots]]. Small Reactors are therefore ideal for stations that do not need to move, situations where physical space is precious or presents relatively light power needs that would not require a larger more expensive reactor. For example, a large reactor only needs 40 [[Metal Grid]]s while a small reactor needs 4 Metal Grids at approximately 10 Small Reactors (150 MW) you would start to see economy of scale benefits clearly when using the large reactor. Between them however, they use [[Uranium Ingot|Uranium Ingots]] equally as efficiently neither one will manage to extract more energy than they would otherwise have to.
 
 
 
==Power Usage==
 
 
 
===Thruster===
 
<!-- This table really should be using SMW and #ask for thrusters anyway -->
 
 
 
For power information relating to thrusters, see [[Thruster|Thruster Mechanics]].
 
===Production (Individual Usage)===
 
{| class="wikitable"
 
|-
 
!colspan="2" style="text-align:center ;" | Machine !! Idle [kW] !! Operational [kW]
 
|-
 
| {{icon|Projector|small}}|| [[Projector]] ||style="text-align:right;"|  0.100 ||style="text-align:right;"| 0.198
 
|-
 
| {{icon|Arc Furnace|small}}|| [[Arc Furnace]] ||style="text-align:right;"|  1.00 ||style="text-align:right;"|  330
 
|-
 
| {{icon|Assembler|small}}|| [[Assembler]] ||style="text-align:right;"|  1.00 ||style="text-align:right;"|  560
 
|-
 
| {{icon|Refinery|small}}|| [[Refinery]] ||style="text-align:right;"|  1.00 ||style="text-align:right;"|  560
 
|-
 
| {{icon|Oxygen Generator|small}}|| [[Oxygen Generator]] ||style="text-align:right;"|  1.00 ||style="text-align:right;"| 330
 
|-
 
| {{icon|Oxygen Farm|small}}|| [[Oxygen Farm]] ||style="text-align:right;"|  0.00 ||style="text-align:right;"|  1
 
|-
 
|}
 
 
 
===Weaponry and tools===
 
{| class="wikitable"
 
|-
 
!colspan="2" style="text-align:center ;" | Device !! {{icon|Small_Ship|small}} Small Ship [kW] !! {{icon|Large_Ship|small}} Large Ship [kW]
 
|-
 
| {{icon|Drill|small}}|| [[Drill]] || 2 || 2
 
|-
 
| {{icon|Welder (Ship)|small}}|| [[Welder]] || 2 || 2
 
|-
 
| {{icon|Grinder (Ship)|small}}|| [[Grinder]] || 2 || 2
 
|-
 
| {{icon|Gatling Turret|small}}|| [[Gatling Turret]] || 2 || 2
 
|-
 
| {{icon|Missile Turret|small}}|| [[Missile Turret]] || 2 || 2
 
|-
 
| {{icon|Interior Turret|small}}|| [[Interior Turret]] || N/A || 2
 
|-
 
| {{icon|Reloadable Rocket Launcher|small}}|| [[Reloadable Rocket Launcher]] || 0.2 || N/A
 
|-
 
| {{icon|Gatling Gun|small}}|| [[Gatling Gun]] || 0.2 || N/A
 
|-
 
|}
 
 
 
===Communication===
 
{| class="wikitable"
 
|-
 
!colspan="2" style="text-align:center ;" | Device !! {{icon|Small_Ship|small}} Small Ship [kW] !! {{icon|Large_Ship|small}} Large Ship [kW]
 
|-
 
| {{icon|Beacon|small}}|| [[Beacon]] || 0 - 10 || 0 - 10
 
|-
 
| {{icon|Antenna|small}}|| [[Antenna]] || 0 - 20 || 0 - 200
 
|-
 
| {{icon|Laser Antenna|small}}|| [[Laser Antenna]] || 181** || 577**
 
|-
 
|}
 
 
 
(**) The maximum power usage of laser antenna include both beaming and rotating at once. Beaming alone would be 180 for Small and 576 For large.
 
 
 
===Other device power usages===
 
{| class="wikitable"
 
|-
 
!colspan="2" style="text-align:center ;" | Device !! {{icon|Small_Ship|small}} Small Ship [kW] !! {{icon|Large_Ship|small}} Large Ship [kW]
 
|-
 
| {{icon|Gravity Generator|small}}|| [[Gravity Generator]] || N/A || 0 - 567.13***
 
|-
 
| {{icon|Spherical Gravity Generator|small}}|| [[Spherical Gravity Generator]] || N/A || 0 - 1600***
 
|-
 
| {{icon|Artificial Mass|small}}|| [[Artificial Mass]] || 25 || 600
 
|-
 
| {{icon|Interior Light|small}}|| [[Interior Light]] || N/A || 0.06
 
|-
 
| {{icon|Spotlight|small}}|| [[Spotlight]] || 0.200 || 1
 
|-
 
| {{icon|Medical Room|small}}|| [[Medical Room]] || N/A || 2
 
|-
 
| {{icon|Jump drive|small}}|| [[Jump drive]] || N/A || 32 000****
 
|-
 
| {{icon|Door|small}}|| [[Door]] || N/A || 0.031
 
|-
 
| {{icon|Sliding Door|small}}|| [[Sliding Door]] || N/A || 0.01 - 1
 
|-
 
| {{icon|Gyroscope|small}}|| [[Gyroscope]] || 0.001 || 0.03
 
|-
 
| {{icon|Ore Detector|small}}|| [[Ore Detector]] || 2 || 2
 
|-
 
| {{icon|LCD Panel|small}}|| [[LCD Panel]] || 0.1 || 0.1
 
|-
 
| {{icon|Wide LCD Panel|small}}|| [[Wide LCD Panel]] || 0.2 || 0.2
 
|-
 
| {{icon|Text Panel|small}}|| [[Text Panel]] || 0.02 || 0.06
 
|-
 
| {{icon|Button Panel|small}}|| [[Button Panel]] || 0.1 || 0.1
 
|-
 
| {{icon|Rotor|small}}|| [[Rotor]] || 0.2 || 2
 
|-
 
| {{icon|Advanced Rotor|small}}|| [[Advanced Rotor]] || 0.2 || 2
 
|-
 
| {{icon|Piston Base|small}}|| [[Piston Base]] || 0.2 || 2
 
|-
 
| {{icon|Collector|small}}|| [[Collector]] || 2 || 2
 
|-
 
| {{icon|Connector|small}}|| [[Connector]] || 0.05 || 5
 
|-
 
| {{icon|Camera|small}}|| [[Camera]] || 0.03 || 0.03
 
|-
 
| {{icon|Sensor|small}}|| [[Sensor]] || 0 - 30 || 0 - 30
 
|-
 
| {{icon|Remote Control|small}}|| [[Remote Control]] || 10 || 10
 
|-
 
| {{icon|Programmable Block|small}}|| [[Programmable Block]] || 0.5 || 0.5
 
|-
 
| {{icon|Sound Block|small}}|| [[Sound Block]] || 0.2 || 0.2
 
|-
 
| {{icon|Conveyor|small}}|| [[Conveyor]] || 0.04 || 0.04
 
|-
 
| {{icon|Conveyor Sorter|small}}|| [[Conveyor Sorter]] || 0.1 || 0.25
 
|-
 
| {{icon|Cryo Chamber|small}}|| [[Cryo Chamber]] || N/A || 0.03
 
|-
 
| {{icon|Oxygen Tank|small}}|| [[Oxygen Tank]] || 0.001 - 1 || 0.001 - 1
 
|-
 
| {{icon|Hydrogen Tank|small}}|| [[Hydrogen Tank]] || 0.001 - 1 || 0.001 - 1
 
|-
 
 
|}
 
|}
  
(***) The power cost of Gravity Generator is directly proportional to the field size and acceleration (absolute value, so 1 g consumes the same as -1 g).
 
(****) Only when charging it's internal battery.
 
  
 
[[Category:Game Mechanics]]
 
[[Category:Game Mechanics]]
 
{{DISPLAYTITLE:电}}
 
{{DISPLAYTITLE:电}}

Latest revision as of 02:05, 13 July 2023

综述

电能[1]在游戏中作为设备运作的能源机制之一。
电能可通过供电设备产生,能在相连网格上传播,各式用电器持续消耗电能来实现各自功能。

供电设备

设备 方块规格 尺寸(宽,高,长) 体积 最大输出功率 重量
Battery Icon.png 电池  Large  1,1,1  15.625 m³
15,625 L
1 Large-Blocks
125 Small-Blocks
1,562.5 hL
15,625,000 mL
 
12 MW
12,000 kW
12,000,000 W
 
3,845 kg
3,845,000 g
3,845,000,000 mg
3.845 t
48px Warfare电池  Large  1,1,1  15.625 m³
15,625 L
1 Large-Blocks
125 Small-Blocks
1,562.5 hL
15,625,000 mL
 
12 MW
12,000 kW
12,000,000 W
 
3,845 kg
3,845,000 g
3,845,000,000 mg
3.845 t
Large Reactor Icon.png 大型反应堆  Large  3,3,3  421.875 m³
421,875 L
27 Large-Blocks
3,375 Small-Blocks
42,187.5 hL
421,875,000 mL
 
300 MW
300,000 kW
300,000,000 W
 
73,795 kg
73,795,000 g
73,795,000,000 mg
73.795 t
48px 大型Warfare反应堆  Large  3,3,3  421.875 m³
421,875 L
27 Large-Blocks
3,375 Small-Blocks
42,187.5 hL
421,875,000 mL
 
300 MW
300,000 kW
300,000,000 W
 
73,795 kg
73,795,000 g
73,795,000,000 mg
73.795 t
Small Reactor Icon.png 小型反应堆  Large  1,1,1  15.625 m³
15,625 L
1 Large-Blocks
125 Small-Blocks
1,562.5 hL
15,625,000 mL
 
15 MW
15,000 kW
15,000,000 W
 
4,793 kg
4,793,000 g
4,793,000,000 mg
4.793 t
48px 小型Warfare反应堆  Large  1,1,1  15.625 m³
15,625 L
1 Large-Blocks
125 Small-Blocks
1,562.5 hL
15,625,000 mL
 
15 MW
15,000 kW
15,000,000 W
 
4,793 kg
4,793,000 g
4,793,000,000 mg
4.793 t
Solar Panel Icon.png 太阳能板  Large  4,2,1  125 m³
125,000 L
8 Large-Blocks
1,000 Small-Blocks
12,500 hL
125,000,000 mL
 
0.16 MW
160 kW
160,000 W
 
516.8 kg
516,800 g
516,800,000 mg
0.517 t
Wind Turbine Icon.png 风轮机  Large  3,3,3  421.875 m³
421,875 L
27 Large-Blocks
3,375 Small-Blocks
42,187.5 hL
421,875,000 mL
 
0.4 MW
400 kW
400,000 W
 
616.4 kg
616,400 g
616,400,000 mg
0.616 t
Hydrogen Engine Icon.png 氢气引擎  Large  1,1,2  31.25 m³
31,250 L
2 Large-Blocks
250 Small-Blocks
3,125 hL
31,250,000 mL
 
5 MW
5,000 kW
5,000,000 W
 
3,253.8 kg
3,253,800 g
3,253,800,000 mg
3.254 t
Battery Icon.png 电池  Small  3,2,3  2.25 m³
2,250 L
0.144 Large-Blocks
18 Small-Blocks
225 hL
2,250,000 mL
 
4 MW
4,000 kW
4,000,000 W
 
1,040.4 kg
1,040,400 g
1,040,400,000 mg
1.04 t
48px Warfare电池  Small  3,2,3  2.25 m³
2,250 L
0.144 Large-Blocks
18 Small-Blocks
225 hL
2,250,000 mL
 
4 MW
4,000 kW
4,000,000 W
 
1,040.4 kg
1,040,400 g
1,040,400,000 mg
1.04 t
Large Reactor Icon.png 大型反应堆  Small  3,3,3  3.375 m³
3,375 L
0.216 Large-Blocks
27 Small-Blocks
337.5 hL
3,375,000 mL
 
14.75 MW
14,750 kW
14,750,000 W
 
3,901 kg
3,901,000 g
3,901,000,000 mg
3.901 t
48px 大型Warfare反应堆  Small  3,3,3  3.375 m³
3,375 L
0.216 Large-Blocks
27 Small-Blocks
337.5 hL
3,375,000 mL
 
14.75 MW
14,750 kW
14,750,000 W
 
3,901 kg
3,901,000 g
3,901,000,000 mg
3.901 t
Small Battery Icon.png 小电池  Small  1,1,1  0.125 m³
125 L
0.008 Large-Blocks
1 Small-Blocks
12.5 hL
125,000 mL
 
0.2 MW
200 kW
200,000 W
 
146.4 kg
146,400 g
146,400,000 mg
0.146 t
Small Reactor Icon.png 小型反应堆  Small  1,1,1  0.125 m³
125 L
0.008 Large-Blocks
1 Small-Blocks
12.5 hL
125,000 mL
 
0.5 MW
500 kW
500,000 W
 
278 kg
278,000 g
278,000,000 mg
0.278 t
48px 小型Warfare反应堆  Small  1,1,1  0.125 m³
125 L
0.008 Large-Blocks
1 Small-Blocks
12.5 hL
125,000 mL
 
0.5 MW
500 kW
500,000 W
 
278 kg
278,000 g
278,000,000 mg
0.278 t
Solar Panel Icon.png 太阳能板  Small  10,5,1  6.25 m³
6,250 L
0.4 Large-Blocks
50 Small-Blocks
625 hL
6,250,000 mL
 
0.04 MW
40 kW
40,000 W
 
143.2 kg
143,200 g
143,200,000 mg
0.143 t
Hydrogen Engine Small Icon.png 氢气引擎  Small  3,2,2  1.5 m³
1,500 L
0.096 Large-Blocks
12 Small-Blocks
150 hL
1,500,000 mL
 
0.5 MW
500 kW
500,000 W
 
1,005.2 kg
1,005,200 g
1,005,200,000 mg
1.005 t

大小反应堆的效率差别

发电装置中的,核发电站 反应堆 以 铀锭 为原料发电,其 1公斤(kg)可产出 1兆瓦时(MWh)电能量

规模更大的核发电站,只是加速反应,缩短时间,料能效率不变。
大网格的“小型核反应堆” 供电功率为 15兆瓦(MW),只需要 4分钟( 0.06~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)
大网格的“大型核反应堆” 供电功率为 300兆瓦(MW),只需要 12秒钟(0.003~小时)就可令1公斤原料反应完毕(产出 1兆瓦时 电能量)

电池的蓄电效率

电池设备蓄电效率为80%,供电无损耗。

大网格的“电池” 满足蓄电功率上限 12兆瓦,从0蓄电到3兆瓦时(MWh)满充需要 18.75分钟(需实多段计时测量),而此时耗理应可充3.75兆瓦时,其中这0.75兆瓦时被浪费(即蓄电效率80%,浪费20%),但放电无损耗
因此从抑制浪费的角度而言,用不可持续核电reactors还是可持续发电(比如太阳能solar panels )的之间,太阳能更适合为电池充电.
电池会试图为自己充电?
电池为电池充电,放电方无损耗,蓄电方效率80%.

用电设备

常态耗电 待机、使用不同阶段耗电

Thruster

For power information relating to thrusters, see Thruster Mechanics.

Production (Individual Usage)

Weaponry and tools

Communication

需电设备

只需要待机电力,需要有电,但并不用很多 需要其它用电设备提供上游工作流程,但本体设备无需用电

Other device power usages

无源设备

那些看起来似乎需求能源的设备 太空球(大,小) 磁吸设备:起落架、磁铁


配电策略

优先供电策略

当负载集群有用电需求时,首先由可持续供电设备供电,其次由燃料供电设备供电,最后由后备供电设备补充。
  1. 太阳能板风轮机 :均为可持续供电设备,虽然供电能力不大,且可能受环境或方位影响,但方便直接,无需燃料。
  2. 氢气引擎 :采用低价值的氢气为发电燃料;需要提供氢气库存,氢气的能效并不高。
  3. 大号反应堆小号反应堆 :采用高效但极端昂贵的铀锭为发电原料(铀矿非常稀有,铀锭的制取相当耗时,购买又昂贵)
  4. 电池 :作为后备供电,应急用;并且蓄电效率浪费20%充电的电能

优先用电策略

用电设备按功能归类并划分了用电的次序,设备可适应电能供量而调整输出大小的(比如推进,电池)会排在后序,而那些不足电量就会自动停机的设备(比如输送,防御)会排在相对优先;电池的蓄电行为排在最后。
  1. (防御)Defense - Interior Turret, Missile Turret, etc
  2. (输送)Conveyors - Conveyor, Conveyor Tube, blocks that make up the Conveyor Network, etc
  3. (生产)Factory - Refinery, Assembler, Oxygen Generator, Air Vent, Oxygen Tank, etc
  4. (门控)Doors - Door, Airtight Hangar Door, etc
  5. (应用)Utility - Communications, Lights, Rotor, Piston, Medical Room, Gravity Generator, the vast majority of electronics, etc
  6. (充能)Charging - Jump drive, specifically players inside cockpits or passenger chairs, recharging their suits.
  7. (翻滚)Gyro  - All Gyroscopes
  8. (推进)Thrust - Standard Thrusters, but not hydrogen based thrusters
  9. (电池)Batteries - Any Batteries attempting to charge themselves.

电的计算及基础认知

  • 功率表示能量传递和转化的效率;以 (或W)为记量单位。[2]
  • 电功表示对电能量的多少;以瓦时(或Wh)为记量单位。[3]


游戏中在蓄电和供电设备信息界面中会常常接触到这些电学数值,下表有助于记忆不同量级单位转换时的比值关系。
量级对照 瓦 (W) 千瓦 (kW) 兆瓦 (MW)
兆瓦 (MW) 1 000 000 W 1 000 kW 1 MW
千瓦 (kW) 1 000 W 1 kW 0.001 MW
瓦 (W) 1 W 0.001 kW 0.000 001 MW
  1. Electricity
  2. 高量级单位有 千瓦(或KW)、兆瓦(或MW)等
  3. 意思是 以某功率 持续作业多久(即:功率 x 作业小时);例如:用电设备工作功率500瓦,需要连续工作5小时,则供电电池设备需预先储备电能量为 500瓦(W)x 5小时(h)= 2500瓦时(Wh)= 2.5千瓦时(KWh)